Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Philip J Cox

School of Pharmacy, The Robert Gordon University, Schoolhill, Aberdeen AB10 1FR, Scotland

Correspondence e-mail: p.j.cox@rgu.ac.uk

Key indicators

Single-crystal X-ray study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.026$
$w R$ factor $=0.074$
Data-to-parameter ratio $=10.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

2,5-Dichloroaniline, a monoclinic structure with a pseudo-tetragonal unit cell

The pseudo-tetragonal cell of the title compound, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}_{2} \mathrm{~N}$, is correctly described as monoclinic with $\beta=90.033(2)^{\circ}$. Amine groups are linked by intermolecular hydrogen bonding involving only one H atom of each group.

Comment

The crystal structure of 2,5-dichloroaniline, (I), was previously determined (Sakurai et al., 1963) from Weissenberg film data. The space group reported was $P 2_{1} / c$ and refinement converged at $R=0.126$. The original cell dimensions were $a=13.237$ (7), $b=3.892$ (6), $c=18.80$ (2) \AA and $\beta=135.2$ (2) ${ }^{\circ}$. The large β angle led to the examination of the cell dimensions with $L E P A G E$ (Spek, 1988) and the possibility of a tetragonal or orthorhombic cell was suggested. A new data set collected at 120 K refined to $R=0.026$ in the space group $P 2_{1} / n$ with cell dimensions $a=13.1141$ (7), $b=3.8137$ (6), $c=13.1699$ (7) A and $\beta=90.033$ (2) ${ }^{\circ}$. Final analysis with PLATON (Spek, 2001) showed that the lattice featured metrical symmetry (pseudotetragonal or pseudo-orthorhombic) not supported by the cell contents which confirmed the crystal system as monoclinic. The $P 2_{1} / n$ designation is related to the size of the β angle, which is much closer to 90° in this setting, compared to the transformed cell. Taking the temperature of the determination into consideration, the cell dimensions originally reported and the cell dimensions transformed into $P 2_{1} / c$ from this study are equivalent; hence polymorphism is not shown.

(I)

Details of the 2,5-dichloroaniline structure (Fig. 1) not previously reported include hydrogen-bond formation between amine groups that involves only one of the H atoms (H1B) (Fig. 2). This results in continuous chains of molecules running in the direction of the b axis that each contain two of the four symmetry-related molecules per unit cell required by the space group (Fig. 3). The aromatic rings pack face-to-face to each other in these chains by translational symmetry along the b axis. The close separation of these rings ($3.490 \AA$) indicates $\pi-\pi$-stacking interactions. There is also a short intramolecular $\mathrm{H} 1 B \cdots \mathrm{Cl} 1$ separation of 2.63 (2) \AA but the $\mathrm{N} 1-$ $\mathrm{H} 1 B \cdots \mathrm{Cl} 1$ angle is only $107(2)^{\circ}$. The N atom deviates by 0.24 (1) Å from the plane defined by atoms C1, H1A and H1B.
\qquad

Figure 1
The molecular structure of (I). Displacement ellipsoids are shown at the 50\% probability level.

Figure 2
Crystal packing diagram showing (x, y, z) molecules linked to $\left(-x+\frac{3}{2}\right.$, $\left.y+\frac{1}{2},-z+\frac{1}{2}\right)$ molecules by translation along the b axis.

The shortest $\mathrm{Cl} \cdots \mathrm{Cl}$ separation is $\mathrm{Cl} 1 \cdots \mathrm{Cl} 2\left(-\frac{1}{2}+x, \frac{1}{2}-y\right.$, $\left.-\frac{1}{2}+z\right)=3.3219$ (8) Å, compared to the previously reported value of 3.37 A .

Figure 3
Crystal packing diagram showing the two chains of hydrogen-bonded molecules within the unit cell. [Symmetry-code suffixes: (1) x, y, z; (2) $\frac{3}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z ;$ (3) $1-x, 1-y, 1-z ;$ (4) $-\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z$.]

The crystal structures of 2,3-, 2,4-, 2,6-, 3,4- and 3,5-dichloroaniline (Dou et al., 1993) also show $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds and short $\mathrm{Cl} \cdots \mathrm{Cl}$ interactions.

Experimental

2,5-Dichloroaniline was purchased from Aldrich and colourless crystals were obtained by sublimation.

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}_{2} \mathrm{~N}$
$M_{r}=162.01$
Monoclinic, $P 2_{1} / n$
$a=13.1141$ (6) \AA
$b=3.8137$ (1) \AA
$c=13.1699$ (7) \AA
$\beta=90.033(2)^{\circ}$
$V=658.67(11) \AA^{3}$
$Z=4$
$D_{x}=1.634 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 1724
reflections
$\theta=2.9-26.0^{\circ}$
$\theta=2.9-26.0$
$\mu=0.88 \mathrm{~mm}^{-1}$
$T=120$ (2) K
Lozenge, colourless
$0.20 \times 0.15 \times 0.10 \mathrm{~mm}$

Data collection

Enraf-Nonius KappaCCD areadetector diffractometer
φ and ω scans to fill Ewald sphere
Absorption correction: multi-scan (SORTAV; Blessing, 1995)
$T_{\text {min }}=0.844, T_{\max }=0.917$
2663 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$w R\left(F^{2}\right)=0.074$
$S=1.03$
1088 reflections
102 parameters
All H-atom parameters refined

1088 independent reflections
1026 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.033$
$\theta_{\text {max }}=26.0^{\circ}$
$h=-16 \rightarrow 16$
$k=-4 \rightarrow 4$
$l=-16 \rightarrow 11$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0449 P)^{2}\right. \\
& \quad+0.1577 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.26 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right)$.

$\mathrm{Cl} 1-\mathrm{C} 2$	$1.7356(17)$	$\mathrm{Cl} 2-\mathrm{C} 5$	$1.7432(18)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2$			
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$117.46(13)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$118.24(14)$
	$121.36(15)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$121.61(16)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{Cl} 1$	$4.6(2)$		

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 B \cdots \mathrm{~N} 1^{\mathrm{i}}$	$0.87(2)$	$2.45(2)$	$3.241(2)$	$151(2)$

Symmetry code: (i) $\frac{3}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$.
Refined $\mathrm{N}-\mathrm{H}$ and $\mathrm{C}-\mathrm{H}$ distances are in the ranges 0.85 (2)0.87 (2) and 0.93 (2) -0.97 (2) \AA, respectively.

Data collection: DENZO (Otwinowski \& Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO and COLLECT; data reduction: $D E N Z O$ and COLLECT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2001); software used to prepare material for publication: SHELXL97 and PLATON.

We thank the EPSRC for use of the National Crystallographic Service, at Southampton University (X-ray data
collection) and for the use of the Chemical Database Service at Daresbury (Fletcher et al., 1996).

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Dou, S., Weiden, N. \& Weiss, A. (1993). Acta Chim. Hung. 130, 497-522. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Fletcher, D. A., McMeeking, R. F. \& Parkin, D. (1996). J. Chem. Inf. Comput. Sci. 36, 746-749.
Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter \& R. M. Sweet, pp. 307-326. London: Academic Press.
Sakurai, T., Sundaralingam, M. \& Jeffrey, G. A. (1963). Acta Cryst. 16, $354-$ 363.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Spek, A. L. (1988). J. Appl. Cryst. 21, 578-579.
Spek, A. L. (2001). PLATON. Utrecht University, The Netherlands.

